imageResearch & Discovery

A Blog Devoted to UD Innovation, Excellence and Scholarship
image

Research & Discovery

A Blog Devoted to UD Innovation, Excellence and Scholarship
Compute the Speed of Light

ABOVE: UD doctoral student Zi Wang works in an optics laboratory in Evans Hall. | Photos courtesy of Tingyi Gu and Zi Wang

UD research team develops new way to make integrated photonics

The signals from a lighthouse to ships at sea is an early example of optical communication, the use of light to transmit information. Today, researchers in the field of integrated photonics are using optical communications principles to build high-tech devices, like lightning-fast computers, which utilize light instead of electricity.

At the University of Delaware, a research team led by Tingyi Gu, assistant professor of electrical and computer engineering, has designed an integrated photonics platform with a one-dimensional metalens — a thin lens that can be designed at the nanoscale to focus light in a specific way — and metasurfaces — tiny surfaces made with nanostructures to manipulate the transmitted or reflected light– that limit the loss of information. The team recently described their device in the journal Nature Communications.

“It’s a new way to achieve integrated photonics compared to the conventional way,” said doctoral student Zi Wang, the first author of the paper.

The team fabricated a tiny metalens on a silicon-based chip programmed with hundreds of tiny air slots, enabling parallel optical signal processing all within the tiny chip. They demonstrated high signal transmission with less than one decibel loss over a 200-nanometer bandwidth. When they layered three of their metasurfaces together, they demonstrated functionalities of Fourier transformation and differentiation — important techniques in the physical sciences that break down functions into constituent parts.

“This is the first paper to use low-loss metasurfaces on the integrated photonics platform,” said Gu. “Our structure is broadband and low loss, which is critical for energy efficient optical communications.”

What’s more, the new device developed at UD is much smaller and lighter than conventional devices of its type. It doesn’t require the manual alignment of lenses, so it is more robust and scalable compared to the traditional free-space optics platforms, which require tremendous patience and time to set up.

This new device could have applications in imaging, sensing and quantum information processing, such as on-chip transformation optics, mathematical operations and spectrometers. With more development, this technology could also be useful in deep learning and neural network applications in computing.

UD Research on Twitter

TOP STORIES

Karl Bookish

The Americans with Disabilities Act at 30

UD professor cites progress, challenges in pursuit of the ‘freedom to excel’

Jennifer Horney

Putting the Pandemic in Perspective

UD epidemiologist Jennifer Horney explains social distancing, testing rates and more to a global audience

Assessing forests from afar

UD’s Pinki Mondal offers recommendations on using remote sensing to quantify forest health